One algorithm is here,
function getCombinations($base,$n){
$baselen = count($base);
if($baselen == 0){
return;
}
if($n == 1){
$return = array();
foreach($base as $b){
$return[] = array($b);
}
return $return;
}else{
//get one level lower combinations
$oneLevelLower = getCombinations($base,$n-1);
//for every one level lower combinations add one element to them that the last element of a combination is preceeded by the element which follows it in base array if there is none, does not add
$newCombs = array();
foreach($oneLevelLower as $oll){
$lastEl = $oll[$n-2];
$found = false;
foreach($base as $key => $b){
if($b == $lastEl){
$found = true;
continue;
//last element found
}
if($found == true){
//add to combinations with last element
if($key < $baselen){
$tmp = $oll;
$newCombination = array_slice($tmp,0);
$newCombination[]=$b;
$newCombs[] = array_slice($newCombination,0);
}
}
}
}
}
return $newCombs;
}
I know it is not efficent in any way, but using in small sets should not be a problem
first base parameter is an array containing elements to be considered when generating combinations.
for simple usage and output:
var_dump(getCombinations(array("a","b","c","d"),2));
and output is
array
0 =>
array
0 => string 'a' (length=1)
1 => string 'b' (length=1)
1 =>
array
0 => string 'a' (length=1)
1 => string 'c' (length=1)
2 =>
array
0 => string 'a' (length=1)
1 => string 'd' (length=1)
3 =>
array
0 => string 'b' (length=1)
1 => string 'c' (length=1)
4 =>
array
0 => string 'b' (length=1)
1 => string 'd' (length=1)
5 =>
array
0 => string 'c' (length=1)
1 => string 'd' (length=1)
To list all subsets of an array, using this combinations algorithm just execute
$base =array("a","b","c","d");
for($i = 1; $i<=4 ;$i++){
$comb = getCombinations($base,$i);
foreach($comb as $c){
echo implode(",",$c)."<br />";
}
}
And output is
a
b
c
d
a,b
a,c
a,d
b,c
b,d
c,d
a,b,c
a,b,d
a,c,d
b,c,d
a,b,c,d