One way to do this is by using a pyspark.sql.Window
to add a column that counts the number of duplicates for each row’s ("ID", "ID2", "Number")
combination. Then select only the rows where the number of duplicate is greater than 1.
import pyspark.sql.functions as f
from pyspark.sql import Window
w = Window.partitionBy('ID', 'ID2', 'Number')
df.select('*', f.count('ID').over(w).alias('dupeCount'))\
.where('dupeCount > 1')\
.drop('dupeCount')\
.show()
#+---+---+------+----+------------+------------+
#| ID|ID2|Number|Name|Opening_Hour|Closing_Hour|
#+---+---+------+----+------------+------------+
#|ALT|QWA| 2|null| 08:54:00| 23:25:00|
#|ALT|QWA| 2|null| 08:53:00| 23:24:00|
#|ALT|QWA| 6|null| 08:59:00| 23:30:00|
#|ALT|QWA| 6|null| 08:55:00| 23:26:00|
#+---+---+------+----+------------+------------+
I used pyspark.sql.functions.count()
to count the number of items in each group. This returns a DataFrame containing all of the duplicates (the second output you showed).
If you wanted to get only one row per ("ID", "ID2", "Number")
combination, you could do using another Window to order the rows.
For example, below I add another column for the row_number
and select only the rows where the duplicate count is greater than 1 and the row number is equal to 1. This guarantees one row per grouping.
w2 = Window.partitionBy('ID', 'ID2', 'Number').orderBy('ID', 'ID2', 'Number')
df.select(
'*',
f.count('ID').over(w).alias('dupeCount'),
f.row_number().over(w2).alias('rowNum')
)\
.where('(dupeCount > 1) AND (rowNum = 1)')\
.drop('dupeCount', 'rowNum')\
.show()
#+---+---+------+----+------------+------------+
#| ID|ID2|Number|Name|Opening_Hour|Closing_Hour|
#+---+---+------+----+------------+------------+
#|ALT|QWA| 2|null| 08:54:00| 23:25:00|
#|ALT|QWA| 6|null| 08:59:00| 23:30:00|
#+---+---+------+----+------------+------------+