Java thread creation overhead

Here is an example microbenchmark:

public class ThreadSpawningPerformanceTest {
static long test(final int threadCount, final int workAmountPerThread) throws InterruptedException {
    Thread[] tt = new Thread[threadCount];
    final int[] aa = new int[tt.length];
    System.out.print("Creating "+tt.length+" Thread objects... ");
    long t0 = System.nanoTime(), t00 = t0;
    for (int i = 0; i < tt.length; i++) { 
        final int j = i;
        tt[i] = new Thread() {
            public void run() {
                int k = j;
                for (int l = 0; l < workAmountPerThread; l++) {
                    k += k*k+l;
                }
                aa[j] = k;
            }
        };
    }
    System.out.println(" Done in "+(System.nanoTime()-t0)*1E-6+" ms.");
    System.out.print("Starting "+tt.length+" threads with "+workAmountPerThread+" steps of work per thread... ");
    t0 = System.nanoTime();
    for (int i = 0; i < tt.length; i++) { 
        tt[i].start();
    }
    System.out.println(" Done in "+(System.nanoTime()-t0)*1E-6+" ms.");
    System.out.print("Joining "+tt.length+" threads... ");
    t0 = System.nanoTime();
    for (int i = 0; i < tt.length; i++) { 
        tt[i].join();
    }
    System.out.println(" Done in "+(System.nanoTime()-t0)*1E-6+" ms.");
    long totalTime = System.nanoTime()-t00;
    int checkSum = 0; //display checksum in order to give the JVM no chance to optimize out the contents of the run() method and possibly even thread creation
    for (int a : aa) {
        checkSum += a;
    }
    System.out.println("Checksum: "+checkSum);
    System.out.println("Total time: "+totalTime*1E-6+" ms");
    System.out.println();
    return totalTime;
}

public static void main(String[] kr) throws InterruptedException {
    int workAmount = 100000000;
    int[] threadCount = new int[]{1, 2, 10, 100, 1000, 10000, 100000};
    int trialCount = 2;
    long[][] time = new long[threadCount.length][trialCount];
    for (int j = 0; j < trialCount; j++) {
        for (int i = 0; i < threadCount.length; i++) {
            time[i][j] = test(threadCount[i], workAmount/threadCount[i]); 
        }
    }
    System.out.print("Number of threads ");
    for (long t : threadCount) {
        System.out.print("\t"+t);
    }
    System.out.println();
    for (int j = 0; j < trialCount; j++) {
        System.out.print((j+1)+". trial time (ms)");
        for (int i = 0; i < threadCount.length; i++) {
            System.out.print("\t"+Math.round(time[i][j]*1E-6));
        }
        System.out.println();
    }
}
}

The results on 64-bit Windows 7 with 32-bit Sun’s Java 1.6.0_21 Client VM on Intel Core2 Duo E6400 @2.13 GHz are as follows:

Number of threads  1    2    10   100  1000 10000 100000
1. trial time (ms) 346  181  179  191  286  1229  11308
2. trial time (ms) 346  181  187  189  281  1224  10651

Conclusions: Two threads do the work almost twice as fast as one, as expected since my computer has two cores. My computer can spawn nearly 10000 threads per second, i. e. thread creation overhead is 0.1 milliseconds. Hence, on such a machine, a couple of hundred new threads per second pose a negligible overhead (as can also be seen by comparing the numbers in the columns for 2 and 100 threads).

Leave a Comment

deneme bonusu veren sitelerbahis casino