What is the algorithm behind R core’s `split` function?

How does split.data.frame work?

function (x, f, drop = FALSE, ...) 
lapply(split(x = seq_len(nrow(x)), f = f, drop = drop, ...), 
       function(ind) x[ind, , drop = FALSE])

It calls split.default to split row index vector seq_len(nrow(x)), then use an lapply loop to extract associated rows into a list entry.

This isn’t strictly a “data.frame” method. It splits any 2-dimensional objects by the 1st dimension, including splitting a matrix by rows.


How does split.default work?

function (x, f, drop = FALSE, sep = ".", lex.order = FALSE, ...) 
{
if (!missing(...)) 
    .NotYetUsed(deparse(...), error = FALSE)
if (is.list(f)) 
    f <- interaction(f, drop = drop, sep = sep, lex.order = lex.order)
else if (!is.factor(f)) 
    f <- as.factor(f)
else if (drop) 
    f <- factor(f)
storage.mode(f) <- "integer"
if (is.null(attr(x, "class"))) 
    return(.Internal(split(x, f)))
lf <- levels(f)
y <- vector("list", length(lf))
names(y) <- lf
ind <- .Internal(split(seq_along(x), f))
for (k in lf) y[[k]] <- x[ind[[k]]]
y
}
  1. if x has no classes (i.e., mostly an atomic vector), .Internal(split(x, f)) is used;
  2. otherwise, it uses .Internal(split()) to split the index along x, then uses a for loop to extract associated elements into a list entry.

An atomic vector (see ?vector) is a vector with the following mode:

  • “logical”, “integer”, “numeric”, “complex”, “character” and “raw”
  • “list”
  • “expression”

An object with class… Er… there are so many!! Let me just give three examples:

  • “factor”
  • “data.frame”
  • “matrix”

In my opinion the split.default is not well written. There are so many objects with classes, yet split.default would deal with them in the same way via"[". This works fine with “factor” and “data.frame” (so we will be splitting data frame along the columns!), but it definitely does not work with a matrix in a way we expect.

A <- matrix(1:9, 3)
#     [,1] [,2] [,3]
#[1,]    1    4    7
#[2,]    2    5    8
#[3,]    3    6    9

split.default(A, c(1, 1, 2))  ## it does not split the matrix by columns!
#$`1`
#[1] 1 2 4 5 7 8
#
#$`2`
#[1] 3 6 9

Actually recycling rule has been applied to c(1, 1, 2), and we are equivalently doing:

split(c(A), rep_len(c(1,1,2), length(A)))

Why doesn’t R core write another line for a “matrix”, like

for (k in lf) y[[k]] <- x[, ind[[k]], drop = FALSE]

Till now the only way to safely split a matrix by columns is to transpose it, then split.data.frame, then another transpose.

lapply(split.data.frame(t(A), c(1, 1, 2)), t)

Another workaround via lapply(split.default(data.frame(A), c(1, 1, 2)), as.matrix) is buggy if A is a character matrix.


How does .Internal(split(x, f)) work?

This is really the core of the core! I will take a small example below for explanation:

set.seed(0)
f <- sample(factor(letters[1:3]), 10, TRUE)
# [1] c a b b c a c c b b
#Levels: a b c

x <- 0:9

Basically there are 3 steps. To enhance readability, Equivalent R code are provided for each step.

step 1: tabulation (counting occurrence of each factor level)

## a factor has integer mode so `tabulate` works
tab <- tabulate(f, nbins = nlevels(f))
[1] 2 4 4

step 2: storage allocation of the resulting list

result <- vector("list", nlevels(f))
for (i in 1:length(tab)) result[[i]] <- vector(mode(x), tab[i])
names(result) <- levels(f)

I would annotate this list as follows, where each line is a list element which is a vector in this example, and each [ ] is a placeholder for an entry of that vector.

$a: [ ] [ ]

$b: [ ] [ ] [ ] [ ]

$c: [ ] [ ] [ ] [ ]

step 3: element allocation

Now it is useful to uncover the internal integer mode for a factor:

.f <- as.integer(f)
#[1] 3 1 2 2 3 1 3 3 2 2

We need to scan x and .f, filling x[i] into the right entry of result[[.f[i]]], informed by an accumulator buffer vector.

ab <- integer(nlevels(f))  ## accumulator buffer

for (i in 1:length(.f)) {
  fi <- .f[i] 
  counter <- ab[fi] + 1L
  result[[fi]][counter] <- x[i]
  ab[fi] <- counter
  }

In the following illustration, ^ is a pointer to elements that are accessed or updated.

## i = 1

 x: [0] [1] [2] [3] [4] [5] [6] [7] [8] [9]
.f: [3] [1] [2] [2] [3] [1] [3] [3] [2] [2]
     ^

ab: [0] [0] [0]  ## on entry
             ^

$a: [ ] [ ]

$b: [ ] [ ] [ ] [ ]

$c: [0] [ ] [ ] [ ]
     ^

ab: [0] [0] [1]  ## on exit
             ^

## i = 2

 x: [0] [1] [2] [3] [4] [5] [6] [7] [8] [9]
.f: [3] [1] [2] [2] [3] [1] [3] [3] [2] [2]
         ^

ab: [0] [0] [1]  ## on entry
     ^

$a: [1] [ ]
     ^
$b: [ ] [ ] [ ] [ ]

$c: [0] [ ] [ ] [ ]

ab: [1] [0] [1]  ## on exit
     ^

## i = 3

 x: [0] [1] [2] [3] [4] [5] [6] [7] [8] [9]
.f: [3] [1] [2] [2] [3] [1] [3] [3] [2] [2]
             ^

ab: [1] [0] [1]  ## on entry
         ^

$a: [1] [ ]

$b: [2] [ ] [ ] [ ]
     ^
$c: [0] [ ] [ ] [ ]

ab: [1] [1] [1]  ## on exit
         ^

## i = 4

 x: [0] [1] [2] [3] [4] [5] [6] [7] [8] [9]
.f: [3] [1] [2] [2] [3] [1] [3] [3] [2] [2]
                 ^

ab: [1] [1] [1]  ## on entry
         ^

$a: [1] [ ]

$b: [2] [3] [ ] [ ]
         ^
$c: [0] [ ] [ ] [ ]

ab: [1] [2] [1]  ## on exit
         ^

## i = 5

 x: [0] [1] [2] [3] [4] [5] [6] [7] [8] [9]
.f: [3] [1] [2] [2] [3] [1] [3] [3] [2] [2]
                     ^

ab: [1] [2] [1]  ## on entry
             ^

$a: [1] [ ]

$b: [2] [3] [ ] [ ]

$c: [0] [4] [ ] [ ]
         ^

ab: [1] [2] [2]  ## on exit
             ^

## i = 6

 x: [0] [1] [2] [3] [4] [5] [6] [7] [8] [9]
.f: [3] [1] [2] [2] [3] [1] [3] [3] [2] [2]
                         ^

ab: [1] [2] [2]  ## on entry
     ^

$a: [1] [5]
         ^
$b: [2] [3] [ ] [ ]

$c: [0] [4] [ ] [ ]

ab: [2] [2] [2]  ## on exit
     ^

## i = 7

 x: [0] [1] [2] [3] [4] [5] [6] [7] [8] [9]
.f: [3] [1] [2] [2] [3] [1] [3] [3] [2] [2]
                             ^

ab: [2] [2] [2]  ## on entry
             ^

$a: [1] [5]

$b: [2] [3] [ ] [ ]

$c: [0] [4] [6] [ ]
             ^

ab: [2] [2] [3]  ## on exit
             ^

## i = 8

 x: [0] [1] [2] [3] [4] [5] [6] [7] [8] [9]
.f: [3] [1] [2] [2] [3] [1] [3] [3] [2] [2]
                                 ^

ab: [2] [2] [3]  ## on entry
             ^

$a: [1] [5]

$b: [2] [3] [ ] [ ]

$c: [0] [4] [6] [7]
                 ^

ab: [2] [2] [4]  ## on exit
             ^

## i = 9

 x: [0] [1] [2] [3] [4] [5] [6] [7] [8] [9]
.f: [3] [1] [2] [2] [3] [1] [3] [3] [2] [2]
                                     ^

ab: [2] [2] [4]  ## on entry
         ^

$a: [1] [5]

$b: [2] [3] [8] [ ]
             ^
$c: [0] [4] [6] [7]

ab: [2] [3] [4]  ## on exit
         ^

## i = 10

 x: [0] [1] [2] [3] [4] [5] [6] [7] [8] [9]
.f: [3] [1] [2] [2] [3] [1] [3] [3] [2] [2]
                                         ^

ab: [2] [3] [4]  ## on entry
         ^

$a: [1] [5]

$b: [2] [3] [8] [9]
                 ^
$c: [0] [4] [6] [7]

ab: [2] [4] [4]  ## on exit
         ^

Leave a Comment

deneme bonusu veren sitelerbahis siteleripulibet girişdeneme bonusutürkçe altyazılı pornocanlı bahis casinocanlı bahis casino siteleriOnwin Güncel Girişholiganbetholiganbet girişholiganbet güncel girişnewsnewsnewsnewsnewsnewsnewsnewsnewsnewsnewsnewsnewsnewsnewsnewsnewsnewsnewsnewsnewsnews