Use pytesseract OCR to recognize text from an image

Here’s a simple approach using OpenCV and Pytesseract OCR. To perform OCR on an image, its important to preprocess the image. The idea is to obtain a processed image where the text to extract is in black with the background in white. To do this, we can convert to grayscale, apply a slight Gaussian blur, then Otsu’s threshold to obtain a binary image. From here, we can apply morphological operations to remove noise. Finally we invert the image. We perform text extraction using the --psm 6 configuration option to assume a single uniform block of text. Take a look here for more options.


Here’s a visualization of the image processing pipeline:

Input image

enter image description here

Convert to grayscale -> Gaussian blur -> Otsu’s threshold

enter image description here

Notice how there are tiny specs of noise, to remove them we can perform morphological operations

enter image description here

Finally we invert the image

enter image description here

Result from Pytesseract OCR

2HHH

Code

import cv2
import pytesseract

pytesseract.pytesseract.tesseract_cmd = r"C:\Program Files\Tesseract-OCR\tesseract.exe"

# Grayscale, Gaussian blur, Otsu's threshold
image = cv2.imread('1.png')
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
blur = cv2.GaussianBlur(gray, (3,3), 0)
thresh = cv2.threshold(blur, 0, 255, cv2.THRESH_BINARY_INV + cv2.THRESH_OTSU)[1]

# Morph open to remove noise and invert image
kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (3,3))
opening = cv2.morphologyEx(thresh, cv2.MORPH_OPEN, kernel, iterations=1)
invert = 255 - opening

# Perform text extraction
data = pytesseract.image_to_string(invert, lang='eng', config='--psm 6')
print(data)

cv2.imshow('thresh', thresh)
cv2.imshow('opening', opening)
cv2.imshow('invert', invert)
cv2.waitKey()

Leave a Comment

tech