ValueError: Input 0 is incompatible with layer lstm_13: expected ndim=3, found ndim=4
I solved the problem by making input size: (95000,360,1) and output size: (95000,22) and changed the input shape to (360,1) in the code where model is defined: model = Sequential() model.add(LSTM(22, input_shape=(360,1))) model.add(Dense(22, activation=’softmax’)) model.compile(loss=”categorical_crossentropy”, optimizer=”adam”, metrics=[‘accuracy’]) print(model.summary()) model.fit(ml2_train_input, ml2_train_output_enc, epochs=2, batch_size=500)