Splitting multiple columns into rows in pandas dataframe

You can first split columns, create Series by stack and remove whitespaces by strip:

s1 = df.value.str.split(',', expand=True).stack().str.strip().reset_index(level=1, drop=True)
s2 = df.date.str.split(',', expand=True).stack().str.strip().reset_index(level=1, drop=True)

Then concat both Series to df1:

df1 = pd.concat([s1,s2], axis=1, keys=['value','date'])

Remove old columns value and date and join:

print (df.drop(['value','date'], axis=1).join(df1).reset_index(drop=True))
  ticker      account value      date
0     aa       assets   100  20121231
1     aa       assets   200  20131231
2     bb  liabilities    50  20141231
3     bb  liabilities   150  20131231

Leave a Comment

techhipbettruvabetnorabahisbahis forumu