This should do the work:
df = df.dropna(how='any',axis=0)
It will erase every row (axis=0) that has “any” Null value in it.
EXAMPLE:
#Recreate random DataFrame with Nan values
df = pd.DataFrame(index = pd.date_range('2017-01-01', '2017-01-10', freq='1d'))
# Average speed in miles per hour
df['A'] = np.random.randint(low=198, high=205, size=len(df.index))
df['B'] = np.random.random(size=len(df.index))*2
#Create dummy NaN value on 2 cells
df.iloc[2,1]=None
df.iloc[5,0]=None
print(df)
A B
2017-01-01 203.0 1.175224
2017-01-02 199.0 1.338474
2017-01-03 198.0 NaN
2017-01-04 198.0 0.652318
2017-01-05 199.0 1.577577
2017-01-06 NaN 0.234882
2017-01-07 203.0 1.732908
2017-01-08 204.0 1.473146
2017-01-09 198.0 1.109261
2017-01-10 202.0 1.745309
#Delete row with dummy value
df = df.dropna(how='any',axis=0)
print(df)
A B
2017-01-01 203.0 1.175224
2017-01-02 199.0 1.338474
2017-01-04 198.0 0.652318
2017-01-05 199.0 1.577577
2017-01-07 203.0 1.732908
2017-01-08 204.0 1.473146
2017-01-09 198.0 1.109261
2017-01-10 202.0 1.745309
See the reference for further detail.
If everything is OK with your DataFrame, dropping NaNs should be as easy as that. If this is still not working, make sure you have the proper datatypes defined for your column (pd.to_numeric comes to mind…)