If you’re running a recent-ish version of pandas then you can use the datetime accessor dt
to access the datetime components:
In [6]:
df['date'] = pd.to_datetime(df['date'])
df['year'], df['month'] = df['date'].dt.year, df['date'].dt.month
df
Out[6]:
date Count year month
0 2010-06-30 525 2010 6
1 2010-07-30 136 2010 7
2 2010-08-31 125 2010 8
3 2010-09-30 84 2010 9
4 2010-10-29 4469 2010 10
EDIT
It looks like you’re running an older version of pandas in which case the following would work:
In [18]:
df['date'] = pd.to_datetime(df['date'])
df['year'], df['month'] = df['date'].apply(lambda x: x.year), df['date'].apply(lambda x: x.month)
df
Out[18]:
date Count year month
0 2010-06-30 525 2010 6
1 2010-07-30 136 2010 7
2 2010-08-31 125 2010 8
3 2010-09-30 84 2010 9
4 2010-10-29 4469 2010 10
Regarding why it didn’t parse this into a datetime in read_csv
you need to pass the ordinal position of your column ([0]
) because when True
it tries to parse columns [1,2,3]
see the docs
In [20]:
t="""date Count
6/30/2010 525
7/30/2010 136
8/31/2010 125
9/30/2010 84
10/29/2010 4469"""
df = pd.read_csv(io.StringIO(t), sep='\s+', parse_dates=[0])
df.info()
<class 'pandas.core.frame.DataFrame'>
Int64Index: 5 entries, 0 to 4
Data columns (total 2 columns):
date 5 non-null datetime64[ns]
Count 5 non-null int64
dtypes: datetime64[ns](1), int64(1)
memory usage: 120.0 bytes
So if you pass param parse_dates=[0]
to read_csv
there shouldn’t be any need to call to_datetime
on the ‘date’ column after loading.