How to flatten / merge overlapping time periods

Here’s a possible solution. The basic idea here is to compare lagged start date with the maximum end date “until now” using the cummax function and create an index that will separate the data into groups

data %>%
  arrange(ID, start) %>% # as suggested by @Jonno in case the data is unsorted
  group_by(ID) %>%
  mutate(indx = c(0, cumsum(as.numeric(lead(start)) >
                     cummax(as.numeric(end)))[-n()])) %>%
  group_by(ID, indx) %>%
  summarise(start = first(start), end = last(end))

# Source: local data frame [3 x 4]
# Groups: ID
# 
#   ID indx      start        end
# 1  A    0 2013-01-01 2013-01-06
# 2  A    1 2013-01-07 2013-01-11
# 3  A    2 2013-01-12 2013-01-15

Leave a Comment

Hata!: SQLSTATE[HY000] [1045] Access denied for user 'divattrend_liink'@'localhost' (using password: YES)