How to create a scatter plot by category [duplicate]

You can use scatter for this, but that requires having numerical values for your key1, and you won’t have a legend, as you noticed.

It’s better to just use plot for discrete categories like this. For example:

import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
np.random.seed(1974)

# Generate Data
num = 20
x, y = np.random.random((2, num))
labels = np.random.choice(['a', 'b', 'c'], num)
df = pd.DataFrame(dict(x=x, y=y, label=labels))

groups = df.groupby('label')

# Plot
fig, ax = plt.subplots()
ax.margins(0.05) # Optional, just adds 5% padding to the autoscaling
for name, group in groups:
    ax.plot(group.x, group.y, marker="o", linestyle="", ms=12, label=name)
ax.legend()

plt.show()

enter image description here

If you’d like things to look like the default pandas style, then just update the rcParams with the pandas stylesheet and use its color generator. (I’m also tweaking the legend slightly):

import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
np.random.seed(1974)

# Generate Data
num = 20
x, y = np.random.random((2, num))
labels = np.random.choice(['a', 'b', 'c'], num)
df = pd.DataFrame(dict(x=x, y=y, label=labels))

groups = df.groupby('label')

# Plot
plt.rcParams.update(pd.tools.plotting.mpl_stylesheet)
colors = pd.tools.plotting._get_standard_colors(len(groups), color_type="random")

fig, ax = plt.subplots()
ax.set_color_cycle(colors)
ax.margins(0.05)
for name, group in groups:
    ax.plot(group.x, group.y, marker="o", linestyle="", ms=12, label=name)
ax.legend(numpoints=1, loc="upper left")

plt.show()

enter image description here

Leave a Comment

Hata!: SQLSTATE[HY000] [1045] Access denied for user 'divattrend_liink'@'localhost' (using password: YES)