How does C compute sin() and other math functions?

In GNU libm, the implementation of sin is system-dependent. Therefore you can find the implementation, for each platform, somewhere in the appropriate subdirectory of sysdeps.

One directory includes an implementation in C, contributed by IBM. Since October 2011, this is the code that actually runs when you call sin() on a typical x86-64 Linux system. It is apparently faster than the fsin assembly instruction. Source code: sysdeps/ieee754/dbl-64/s_sin.c, look for __sin (double x).

This code is very complex. No one software algorithm is as fast as possible and also accurate over the whole range of x values, so the library implements several different algorithms, and its first job is to look at x and decide which algorithm to use.

  • When x is very very close to 0, sin(x) == x is the right answer.

  • A bit further out, sin(x) uses the familiar Taylor series. However, this is only accurate near 0, so…

  • When the angle is more than about 7°, a different algorithm is used, computing Taylor-series approximations for both sin(x) and cos(x), then using values from a precomputed table to refine the approximation.

  • When |x| > 2, none of the above algorithms would work, so the code starts by computing some value closer to 0 that can be fed to sin or cos instead.

  • There’s yet another branch to deal with x being a NaN or infinity.

This code uses some numerical hacks I’ve never seen before, though for all I know they might be well-known among floating-point experts. Sometimes a few lines of code would take several paragraphs to explain. For example, these two lines

double t = (x * hpinv + toint);
double xn = t - toint;

are used (sometimes) in reducing x to a value close to 0 that differs from x by a multiple of π/2, specifically xn × π/2. The way this is done without division or branching is rather clever. But there’s no comment at all!


Older 32-bit versions of GCC/glibc used the fsin instruction, which is surprisingly inaccurate for some inputs. There’s a fascinating blog post illustrating this with just 2 lines of code.

fdlibm’s implementation of sin in pure C is much simpler than glibc’s and is nicely commented. Source code: fdlibm/s_sin.c and fdlibm/k_sin.c

Leave a Comment

tech