If you want to get weights and biases of all layers, you can simply use:
for layer in model.layers: print(layer.get_config(), layer.get_weights())
This will print all information that’s relevant.
If you want the weights directly returned as numpy arrays, you can use:
first_layer_weights = model.layers[0].get_weights()[0]
first_layer_biases = model.layers[0].get_weights()[1]
second_layer_weights = model.layers[1].get_weights()[0]
second_layer_biases = model.layers[1].get_weights()[1]
etc.