How are closures and scopes represented at run time in JavaScript

It’s not true that there are restrictions that prevent you from calling eval that would be missed by static-analysis: it’s just that such references to to eval run in the global scope. Note that this is a change in ES5 from ES3 where indirect and direct references to eval both ran in the local scope, and as such, I’m unsure whether anything actually does any optimizations based upon this fact.

An obvious way to test this is to make BigObject be a really big object, and force a gc after running f0–f2. (Because, hey, as much as I think I know the answer, testing is always better!)

So…

The test

var closure;
function BigObject() {
  var a="";
  for (var i = 0; i <= 0xFFFF; i++) a += String.fromCharCode(i);
  return new String(a); // Turn this into an actual object
}
function f0() {
  var x = new BigObject();
  var y = 0;
  closure = function(){ return 7; };
}
function f1() {
  var x = new BigObject();
  closure =  (function(y) { return function(){return y++;}; })(0);
}
function f2() {
  var x = new BigObject();
  var y = 0;
  closure = function(){ return y++; };
}
function f3() {
  var x = new BigObject();
  var y = 0;
  closure = eval("(function(){ return 7; })"); // direct eval
}
function f4() {
  var x = new BigObject();
  var y = 0;
  closure = (1,eval)("(function(){ return 7; })"); // indirect eval (evaluates in global scope)
}
function f5() {
  var x = new BigObject();
  var y = 0;
  closure = (function(){ return eval("(function(){ return 7; })"); })();
}
function f6() {
  var x = new BigObject();
  var y = 0;
  closure = function(){ return eval("(function(){ return 7; })"); };
}
function f7() {
  var x = new BigObject();
  var y = 0;
  closure = (function(){ return (1,eval)("(function(){ return 7; })"); })();
}
function f8() {
  var x = new BigObject();
  var y = 0;
  closure = function(){ return (1,eval)("(function(){ return 7; })"); };
}
function f9() {
  var x = new BigObject();
  var y = 0;
  closure = new Function("return 7;"); // creates function in global scope
}

I’ve added tests for eval/Function, seeming these are also interesting cases. The different between f5/f6 is interesting, because f5 is really just identical to f3, given what is really an identical function for closure; f6 merely returns something that once evaluated gives that, and as the eval hasn’t yet been evaluated, the compiler can’t know that there is no reference to x within it.

SpiderMonkey

js> gc();
"before 73728, after 69632, break 01d91000\n"
js> f0();
js> gc(); 
"before 6455296, after 73728, break 01d91000\n"
js> f1(); 
js> gc(); 
"before 6455296, after 77824, break 01d91000\n"
js> f2(); 
js> gc(); 
"before 6455296, after 77824, break 01d91000\n"
js> f3(); 
js> gc(); 
"before 6455296, after 6455296, break 01db1000\n"
js> f4(); 
js> gc(); 
"before 12828672, after 73728, break 01da2000\n"
js> f5(); 
js> gc(); 
"before 6455296, after 6455296, break 01da2000\n"
js> f6(); 
js> gc(); 
"before 12828672, after 6467584, break 01da2000\n"
js> f7(); 
js> gc(); 
"before 12828672, after 73728, break 01da2000\n"
js> f8(); 
js> gc(); 
"before 6455296, after 73728, break 01da2000\n"
js> f9(); 
js> gc(); 
"before 6455296, after 73728, break 01da2000\n"

SpiderMonkey appears to GC “x” on everything except f3, f5, and f6.

It appears to as much as possible (i.e., when possible, y, as well as x) unless there is direct eval call within the scope-chain of any function that still exists. (Even if that function object itself has been GC’d and no longer exists, as is the case in f5, which theoretically means that it could GC x/y.)

V8

gsnedders@dolores:~$ v8 --expose-gc --trace_gc --shell foo.js
V8 version 3.0.7
> gc();
Mark-sweep 0.8 -> 0.7 MB, 1 ms.
> f0();
Scavenge 1.7 -> 1.7 MB, 2 ms.
Scavenge 2.4 -> 2.4 MB, 2 ms.
Scavenge 3.9 -> 3.9 MB, 4 ms.
> gc();   
Mark-sweep 5.2 -> 0.7 MB, 3 ms.
> f1();
Scavenge 4.7 -> 4.7 MB, 9 ms.
> gc();
Mark-sweep 5.2 -> 0.7 MB, 3 ms.
> f2();
Scavenge 4.8 -> 4.8 MB, 6 ms.
> gc();
Mark-sweep 5.3 -> 0.8 MB, 3 ms.
> f3();
> gc();
Mark-sweep 5.3 -> 5.2 MB, 17 ms.
> f4();
> gc();
Mark-sweep 9.7 -> 0.7 MB, 5 ms.
> f5();
> gc();
Mark-sweep 5.3 -> 5.2 MB, 12 ms.
> f6();
> gc();
Mark-sweep 9.7 -> 5.2 MB, 14 ms.
> f7();
> gc();
Mark-sweep 9.7 -> 0.7 MB, 5 ms.
> f8();
> gc();
Mark-sweep 5.2 -> 0.7 MB, 2 ms.
> f9();
> gc();
Mark-sweep 5.2 -> 0.7 MB, 2 ms.

V8 appears to GC x on everything apart from f3, f5, and f6. This is identical to SpiderMonkey, see analysis above. (Note however that the numbers aren’t detailed enough to tell whether y is being GC’d when x is not, I’ve not bothered to investigate this.)

Carakan

I’m not going to bother running this again, but needless to say behaviour is identical to SpiderMonkey and V8. Harder to test without a JS shell, but doable with time.

JSC (Nitro) and Chakra

Building JSC is a pain on Linux, and Chakra doesn’t run on Linux. I believe JSC has the same behaviour to the above engines, and I’d be surprised if Chakra didn’t have too. (Doing anything better quickly becomes very complex, doing anything worse, well, you’d almost never be doing GC and have serious memory issues…)

Leave a Comment