DateTime.DayOfWeek micro optimization

Let’s do some tunning.

  1. Prime factorization of TimeSpan.TicksPerDay (864000000000) : Prime factorization of 864000000000

DayOfWeek now can be expressed as:

public DayOfWeek DayOfWeek
{                   
    get
    {
        return (DayOfWeek)(((Ticks>>14) / 52734375 + 1L) % 7L);
    }
}

And we are working in modulo 7, 52734375 % 7 it’s 1. So, the code above is equal to:

public static DayOfWeek dayOfWeekTurbo(this DateTime date)
{
    return (DayOfWeek)(((date.Ticks >> 14) + 1) % 7);
}

Intuitively, it works. But let’s prove it with code

public static void proof()
{
    DateTime date = DateTime.MinValue;
    DateTime max_date = DateTime.MaxValue.AddDays(-1);
    while (date < max_date)
    {
        if (date.DayOfWeek != date.dayOfWeekTurbo())
        {
            Console.WriteLine("{0}\t{1}", date.DayOfWeek, date.dayOfWeekTurbo());
            Console.ReadLine();
        }
        date = date.AddDays(1);
    }
}

You can run it if you want, but I assure you it works fine.

Ok, the only thing left is a bit of benchmarking.

This is an auxiliary method, in order to make the code clearer:

public static IEnumerable<DateTime> getAllDates()
{
    DateTime d = DateTime.MinValue;
    DateTime max = DateTime.MaxValue.AddDays(-1);
    while (d < max)
    {
        yield return d;
        d = d.AddDays(1);
    }
}

I guess it needs no explanation.

public static void benchDayOfWeek()
{

    DateTime[] dates = getAllDates().ToArray();
    // for preventing the compiler doing things that we don't want to
    DayOfWeek[] foo = new DayOfWeek[dates.Length];
    for (int max_loop = 0; max_loop < 10000; max_loop+=100)
    {


        Stopwatch st1, st2;
        st1 = Stopwatch.StartNew();
        for (int i = 0; i < max_loop; i++)
            for (int j = 0; j < dates.Length; j++)
                foo[j] = dates[j].DayOfWeek;
        st1.Stop();

        st2 = Stopwatch.StartNew();
        for (int i = 0; i < max_loop; i++)
            for (int j = 0; j < dates.Length; j++)
                foo[j] = dates[j].dayOfWeekTurbo();
        st2.Stop();

        Console.WriteLine("{0},{1}", st1.ElapsedTicks, st2.ElapsedTicks);

    }
    Console.ReadLine();
    Console.WriteLine(foo[0]);

}

Output:

96,28
172923452,50884515
352004290,111919170
521851120,168153321
683972846,215554958
846791857,264187194
1042803747,328459950
Monday

If we make a chart with the data, it looks like this:

Chart

╔══════════════════════╦════════════════════╦═════════════════════╦═════════════╗
║ Number of iterations ║ Standard DayOfWeek ║ Optimized DayOfWeek ║   Speedup   ║
╠══════════════════════╬════════════════════╬═════════════════════╬═════════════╣
║                    0 ║                 96 ║                  28 ║ 3.428571429 ║
║                  100 ║          172923452 ║            50884515 ║ 3.398351188 ║
║                  200 ║          352004290 ║           111919170 ║ 3.145165301 ║
║                  300 ║          521851120 ║           168153321 ║ 3.103424404 ║
║                  400 ║          683972846 ║           215554958 ║ 3.1730787   ║
║                  500 ║          846791857 ║           264187194 ║ 3.205272156 ║
║                  600 ║         1042803747 ║           328459950 ║ 3.174827698 ║
╚══════════════════════╩════════════════════╩═════════════════════╩═════════════╝

3x faster.

Note: the code was compiled with Visual Studio 2013, Release mode, and ran with everything closed but the application. (Including VS, of course).

I ran the tests in a toshiba Satellite C660-2JK,
Intel® Core™ i3-2350M Processor, and Windows® 7 Home Premium 64-bit.

EDIT:

As Jon Skeet noticed, this method can fail when it’s not on a date boundary.

Due to Jon Skeet’s comment this answer,

dayOfWeekTurbo can fail when it’s not on a date boundary. For example,
consider new DateTime(2014, 3, 11, 21, 39, 30) – your method thinks
it’s Friday when actually it’s Tuesday. The “we are working in modulo
7” is the wrong way round, basically… by removing that extra
division, the day-of-week changes during the day.

I decided to edit it.

If we change the proof() method,

public static void proof()
{
    DateTime date = DateTime.MinValue;
    DateTime max_date = DateTime.MaxValue.AddSeconds(-1);
    while (date < max_date)
    {
        if (date.DayOfWeek != date.dayOfWeekTurbo2())
        {
            Console.WriteLine("{0}\t{1}", date.DayOfWeek, date.dayOfWeekTurbo2());
            Console.ReadLine();
        }
        date = date.AddSeconds(1);
    }
}

Fails!

Jon Skeet was right.
Let’s follow Jon Skeet’s advice and apply the division.

public static DayOfWeek dayOfWeekTurbo2(this DateTime date)
{
    return (DayOfWeek)((((date.Ticks >> 14) / 52734375L )+ 1) % 7);
}

Also, we change the method getAllDates().

public static IEnumerable<DateTime> getAllDates()
{
    DateTime d = DateTime.MinValue;
    DateTime max = DateTime.MaxValue.AddHours(-1);
    while (d < max)
    {
        yield return d;
        d = d.AddHours(1);
    }
}

And benchDayOfWeek()

public static void benchDayOfWeek()
{

    DateTime[] dates = getAllDates().ToArray();
    DayOfWeek[] foo = new DayOfWeek[dates.Length];
    for (int max_loop = 0; max_loop < 10000; max_loop ++)
    {


        Stopwatch st1, st2;
        st1 = Stopwatch.StartNew();
        for (int i = 0; i < max_loop; i++)
            for (int j = 0; j < dates.Length; j++)
                foo[j] = dates[j].DayOfWeek;
        st1.Stop();

        st2 = Stopwatch.StartNew();
        for (int i = 0; i < max_loop; i++)
            for (int j = 0; j < dates.Length; j++)
                foo[j] = dates[j].dayOfWeekTurbo2();
        st2.Stop();

        Console.WriteLine("{0},{1}", st1.ElapsedTicks, st2.ElapsedTicks);

    }
    Console.ReadLine();
    Console.WriteLine(foo[0]);

}

It will still be faster? the answer is yes

Output:

90,26
43772675,17902739
84299562,37339935
119418847,47236771
166955278,72444714
207441663,89852249
223981096,106062643
275440586,125110111
327353547,145689642
363908633,163442675
407152133,181642026
445141584,197571786
495590201,217373350
520907684,236609850
511052601,217571474
610024381,260208969
637676317,275558318

Chart

╔══════════════════════╦════════════════════╦════════════════════════╦═════════════╗
║ Number of iterations ║ Standard DayOfWeek ║ Optimized DayOfWeek(2) ║  Speedup    ║
╠══════════════════════╬════════════════════╬════════════════════════╬═════════════╣
║                    1 ║           43772675 ║               17902739 ║ 2.445026708 ║
║                    2 ║           84299562 ║               37339935 ║ 2.257624766 ║
║                    3 ║          119418847 ║               47236771 ║ 2.528090817 ║
║                    4 ║          166955278 ║               72444714 ║ 2.304588821 ║
║                    5 ║          207441663 ║               89852249 ║ 2.308697504 ║
║                    6 ║          223981096 ║              106062643 ║ 2.111781205 ║
║                    7 ║          275440586 ║              125110111 ║ 2.201585338 ║
║                    8 ║          327353547 ║              145689642 ║ 2.246923958 ║
║                    9 ║          363908633 ║              163442675 ║ 2.226521519 ║
║                   10 ║          407152133 ║              181642026 ║ 2.241508433 ║
║                   11 ║          445141584 ║              197571786 ║ 2.25306251  ║
║                   12 ║          495590201 ║              217373350 ║ 2.279903222 ║
║                   13 ║          520907684 ║              236609850 ║ 2.201546909 ║
║                   14 ║          511052601 ║              217571474 ║ 2.348895246 ║
║                   15 ║          610024381 ║              260208969 ║ 2.344363391 ║
║                   16 ║          637676317 ║              275558318 ║ 2.314124725 ║
╚══════════════════════╩════════════════════╩════════════════════════╩═════════════╝

2x faster.

Leave a Comment

tech