If you change the merge type to how='outer'
and indicator=True
this will add a column to tell you whether the values are left/both/right only:
In [2]:
A = pd.DataFrame({'x':np.arange(5)})
B = pd.DataFrame({'x':np.arange(3,8)})
print(A)
print(B)
x
0 0
1 1
2 2
3 3
4 4
x
0 3
1 4
2 5
3 6
4 7
In [3]:
pd.merge(A,B, how='outer', indicator=True)
Out[3]:
x _merge
0 0.0 left_only
1 1.0 left_only
2 2.0 left_only
3 3.0 both
4 4.0 both
5 5.0 right_only
6 6.0 right_only
7 7.0 right_only
You can then filter the resultant merged df on the _merge
col:
In [4]:
merged = pd.merge(A,B, how='outer', indicator=True)
merged[merged['_merge'] == 'left_only']
Out[4]:
x _merge
0 0.0 left_only
1 1.0 left_only
2 2.0 left_only
You can also use isin
and negate the mask to find values not in B:
In [5]:
A[~A['x'].isin(B['x'])]
Out[5]:
x
0 0
1 1
2 2