It appears that this can be accomplished with a depth-first search of the graph. The depth-first search will find all non-cyclical paths between two nodes. This algorithm should be very fast and scale to large graphs (The graph data structure is sparse so it only uses as much memory as it needs to).
I noticed that the graph you specified above has only one edge that is directional (B,E). Was this a typo or is it really a directed graph? This solution works regardless. Sorry I was unable to do it in C, I’m a bit weak in that area. I expect that you will be able to translate this Java code without too much trouble though.
Graph.java:
import java.util.HashMap;
import java.util.LinkedHashSet;
import java.util.LinkedList;
import java.util.Map;
import java.util.Set;
public class Graph {
private Map<String, LinkedHashSet<String>> map = new HashMap();
public void addEdge(String node1, String node2) {
LinkedHashSet<String> adjacent = map.get(node1);
if(adjacent==null) {
adjacent = new LinkedHashSet();
map.put(node1, adjacent);
}
adjacent.add(node2);
}
public void addTwoWayVertex(String node1, String node2) {
addEdge(node1, node2);
addEdge(node2, node1);
}
public boolean isConnected(String node1, String node2) {
Set adjacent = map.get(node1);
if(adjacent==null) {
return false;
}
return adjacent.contains(node2);
}
public LinkedList<String> adjacentNodes(String last) {
LinkedHashSet<String> adjacent = map.get(last);
if(adjacent==null) {
return new LinkedList();
}
return new LinkedList<String>(adjacent);
}
}
Search.java:
import java.util.LinkedList;
public class Search {
private static final String START = "B";
private static final String END = "E";
public static void main(String[] args) {
// this graph is directional
Graph graph = new Graph();
graph.addEdge("A", "B");
graph.addEdge("A", "C");
graph.addEdge("B", "A");
graph.addEdge("B", "D");
graph.addEdge("B", "E"); // this is the only one-way connection
graph.addEdge("B", "F");
graph.addEdge("C", "A");
graph.addEdge("C", "E");
graph.addEdge("C", "F");
graph.addEdge("D", "B");
graph.addEdge("E", "C");
graph.addEdge("E", "F");
graph.addEdge("F", "B");
graph.addEdge("F", "C");
graph.addEdge("F", "E");
LinkedList<String> visited = new LinkedList();
visited.add(START);
new Search().depthFirst(graph, visited);
}
private void depthFirst(Graph graph, LinkedList<String> visited) {
LinkedList<String> nodes = graph.adjacentNodes(visited.getLast());
// examine adjacent nodes
for (String node : nodes) {
if (visited.contains(node)) {
continue;
}
if (node.equals(END)) {
visited.add(node);
printPath(visited);
visited.removeLast();
break;
}
}
for (String node : nodes) {
if (visited.contains(node) || node.equals(END)) {
continue;
}
visited.addLast(node);
depthFirst(graph, visited);
visited.removeLast();
}
}
private void printPath(LinkedList<String> visited) {
for (String node : visited) {
System.out.print(node);
System.out.print(" ");
}
System.out.println();
}
}
Program Output:
B E
B A C E
B A C F E
B F E
B F C E